Chapter 1 Review Problems

Chapter 1 Review Problems

Chapter 1 Review Problems

1)  Describe in words the set of points that are 5 units away from a circle with radius 5 units.

2)  The measure of the supplement of an angle is 150° more than half the measure of the angle. Find the measure of the angle.

Supplementary angles will add to 180°.

Hint #2 Tap Icon Let the smaller angle = x

    \[\\\]

Can you write an expression for the larger angle?

3)  Find the following:

a. \overrightarrow{SG} \cup \overrightarrow{SE} =  ___________

b. \overrightarrow{NI} \cap \overrightarrow{SN} = ___________

c. \overline{GI} \cup \overline{GE} = ___________

d. \overline{ES} \cap \overline{IN} = ___________

e. Name all the angles that are less than 180° with vertex at point G.

4)  Given:  \overline{NM} is the ⊥ bisector of \overline{IE} , ∠MSA = (3x + 3y)° , SE = 6y − 5 , AE = 2x

(a bisector splits an object into 2 equal parts

  Determine the length of  \overline{AE} .

5)  Find the measure of the (smaller) angle formed by the hands of a clock at 12:45.

6) Given: \overline{GS} ⊥ \overline{VA} , ∠ESG = (8x + 5)° , ∠VSE = (x 2 + 20)°

Prove:   \overline{ES}  bisects  ∠VSG

Give a reason for your initial equation, do the algebraic work, and give a reason for your concluding statement.

7)  Given: \overline{AE} \perp \overline{EC} , \overline{BE} \perp \overline{ED} 

∠AEB = (10x + 2y)° ,

∠BEC = (12x − 4y)° ,

∠CED = (8x − 6y

Find the measure of ∠BEC. 

8)  Given:  Diagram as shown

     Find:  m∠BSE + m∠ASR

9)  Draw and describe a picture to represent the set of all points that are equidistant from two parallel lines.

10)  Rotate quadrilateral BART 90° counter-clockwise about point R.

11)

Given:

\overlines{DB} bisects \overline{AC}
AB = 4y − 7 , BC = 2y + 5

Find the length of  \overline{AC}.

12)  State all symmetries in each figure.

a.

b.

13)

Given:

\overline{BE} \perp \overline{AL} , ∠ABE = (18x − 2y)° ,
∠EBD = (-6y)° , ∠DBL = (9x

Find:  m∠EBD

14)  Determine the smaller angle made by the hands of a clock at 4:10.

15)  On a graph, Point A is at (0,4). Point A is then rotated 90° clockwise about the origin to point A. What are the coordinates of point A ?

16)   PQRS is a rectangle. 

a)  Find the coordinates of Point P.

b)  Find the area of the rectangle.

17)

a. Point P is reflected over the y-axis to point A. Find the coordinates of A.

b. Point P is reflected over the origin to point B. Find the coordinates of B.

c.    If C is the midpoint of  \overline{PA} , find the coordinates of C.

18)  Use a ruler to translate ∆TOM  by vector  v

19)  Use a ruler, compass, and protractor to rotate figure TRAP  clockwise 270º  around point S. 

20)  Rotate quadrilateral BART counter-clockwise 120º around point S. Label the image appropriately.

21)  a. How many angles are in the diagram?

b. If the measures of of ∠1, ∠2, and ∠3 are in the ratio of  4 : 5 : 6, what is the measure of the largest angle?

22)  Use a ruler, compass, and protractor to reflect  ∆WIN over  line l  and then rotate  image ∆WIN 90° counter-clockwise about point P. 

23)  Translate ∆DOG by vector v and then reflect the image over line s. Label the image appropriately.

24)  In problems #22 and #23, are either pair of transformations commutative?  That is, if you switched the order of the operations would the result be the same?

25)  At  9:00 the hands of a clock form an angle of 90°. To the nearest second, at what time will the hands of the clock next form a 90° angle?

Hint #25 Tap Icon